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Abstract: With the growing prevalence of large-scale intelligent surveillance camera
systems, the burden on real-time video analytics pipelines has significantly increased due
to continuous video transmission from numerous cameras. To mitigate this strain, recent
approaches focus on filtering irrelevant video frames early in the pipeline, at the camera
or edge device level. In this paper, we propose Wi-Filter, an innovative filtering method
that leverages Wi-Fi signals from wireless edge devices, such as Wi-Fi-enabled cameras, to
optimize filtering decisions dynamically. Wi-Filter utilizes channel state information (CSI)
readily available from these wireless cameras to detect human motion within the field of
view, adjusting the filtering threshold accordingly. The motion-sensing models in Wi-Filter
(Wi-Fi assisted Filter) are trained using a self-supervised approach, where CSI data are
automatically annotated via synchronized camera feeds. We demonstrate the effectiveness
of Wi-Filter through real-world experiments and prototype implementation. Wi-Filter
achieves motion detection accuracy exceeding 97.2% and reduces false positive rates by up
to 60% while maintaining a high detection rate, even in challenging environments, showing
its potential to enhance the efficiency of video analytics pipelines.

Keywords: Wi-Fi sensing; channel state information; video frame filtering; 1D CNN;
edge computing

1. Introduction
In recent years, intelligent video analytics systems have become increasingly prevalent

across various fields, such as the Internet of Things (IoT), public safety, transportation,
and numerous industrial applications. These systems play a vital role in a wide range of
scenarios, from monitoring buildings, airports, train stations, schools, and universities, to
managing urban and highway traffic. They are designed to detect critical events, such as
car accidents or crowd surges, and promptly issue relevant alerts [1,2].

One of the major challenges faced by these systems is achieving real-time processing to
deliver timely and actionable insights across diverse activities and scenarios. Typically, video
analytics servers runs on centralized servers located in monitoring centers or on cloud plat-
forms, which offer powerful processing capabilities and virtually unlimited storage. Despite
these advantages, traditional centralized or cloud-based systems often struggle to maintain
real-time responsiveness across a large number of connected devices. This limitation arises
from the continuous transmission of high-resolution video streams from multiple cameras,
which imposes significant computational and network burdens on centralized systems. The
high processing demands, coupled with substantial network bandwidth requirements, further
intensifies these challenges, hindering efficient and scalable system performance.
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Edge computing has emerged as a promising solution to overcome these chal-
lenges [2–4]. By shifting computation from centralized data centers to end-user devices
and local networks, edge computing extends the capabilities of cloud architecture to the
network’s edge. This paradigm enables the deployment of low-latency, innovative services
that meet the increasing demand for real-time responsiveness. However, edge computing
also faces challenges, particularly when high-resolution data are continuously streamed
from numerous cameras, which results in significant computational and network load
on the edge infrastructure. This emphasizes the importance of developing efficient and
scalable solutions to enhance the performance of video analytics systems at the edge.

One effective approach to mitigate these challenges is frame filtering at the early stages
of the video analytics pipeline—at the camera and/or edge devices—which assesses frame
confidence and decides whether to transmit frames for further processing. Several filtering
techniques have been developed to tackle this issue, generally categorized into three main
models: (i) compressed object detection models [5–7], (ii) binary classification models [8],
and (iii) pixel-level frame differencing methods [9].

Despite such efforts, the capabilities of the existing solutions are still highly limited.
These approaches commonly rely on preconfigured static thresholds [5,9,10] due to their
simplicity and efficiency. However, optimal filtering thresholds are highly dependent on
video content, which can vary dynamically, reducing their effectiveness. Additionally,
object recognition in low-light environments or under occlusion remains a persistent
challenge in camera-based approaches.

In this paper, we demonstrate how Wi-Fi-based activity recognition opens up a novel
opportunity for frame filtering, overcoming the limitations of static thresholds used in
previous approaches. Our key innovation lies in detecting motion within a camera’s field
of view (FoV) by leveraging human-induced variations in the Wi-Fi channel between
the camera and a Wi-Fi access point (AP). This enables dynamic adjustments in filtering
decisions based on real-time motion detection.

We introduce Wi-Filter, a novel filtering method aimed at maximizing the benefits
of edge filtering in video analytics pipelines for Wi-Fi-enabled cameras. Wi-Filter utilizes
channel state information (CSI), inherently available in wireless cameras, to detect human
motion in the FoV and dynamically adjust the filtering threshold accordingly.

Our approach uses a data-driven methodology to capture the unique temporal and
spectral features of Wi-Fi CSI through lightweight learning models, enabling effective
human motion detection with minimal computational overhead. To our knowledge, Wi-
Filter is the first frame-filtering technique to employ Wi-Fi-based activity recognition. We
validate the effectiveness of Wi-Filter through a prototype implementation, supported by
extensive experimental evaluations that showcase its potential to significantly improve
video analytics systems.

The main contributions of this paper are summarized as follows:

• Introduction of Wi-Filter: We propose Wi-Filter, a novel filtering framework that leverages
Wi-Fi signals from wireless edge devices, such as Wi-Fi-enabled cameras, to dynamically
adjust the filtering threshold. To the best of our knowledge, this is the first approach that
utilizes Wi-Fi-based activity recognition to enhance frame filtering mechanisms.

• On-device CSI Data Processing with Lightweight 1D CNN: Our proposed frame-
work employs a one-dimensional convolutional neural network (1D CNN) instead
of the commonly used 2D CNN models in Wi-Fi sensing for processing run-time
collected CSI data. This choice allows the filtering module to operate on-device
with minimal computational overhead, making it a more practical solution for
resource-constrained environments.
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• Prototype Implementation and Evaluation: We implemented a prototype of Wi-Filter
using low-capacity edge devices and a GPU-enabled edge server. Testbed deployments
demonstrated that our system achieved the same frame analysis accuracy while signifi-
cantly reducing the GPU and CPU load of the cloud server, as well as network traffic.

• Comprehensive Summary of Recent Work: We also provide a comprehensive summary
of intelligent video analytics systems, highlighting relevant research and existing
methods to contextualize the importance and contribution of our proposed solution.

The remainder of this paper is organized as follows. Section 2 provides a summary
of the work related to our approach. Section 3 presents the background and motivation
behind this study. Section 4 offers an overview of Wi-Filter and elaborates on its system
design. Section 5 presents the evaluation results, demonstrating the applicability of Wi-
Filter. Finally, in Section 6, we discuss potential future extensions and conclude the paper.

2. Related Work
This section provides a comprehensive overview of research efforts in scalable video

analytics at the edge, focusing on three key areas: (i) efficient video analytics at the edge,
(ii) filtering techniques developed to address the challenges discussed in this paper, and
(iii) WiFi-based sensing technologies, which have emerged as a promising tool for non-
invasive detection and analysis.

2.1. Efficient Video Analytics at the Edge

In a recent study [11], an idea to send the video stream in low resolution, but recover
the high-resolution frames from the low-resolution stream via a super-resolution procedure
tailored for the actual analytics tasks, has been proposed. This paper presented an edge-to-
cloud framework for advanced vision analytics, CloudSeg, which achieves low latency and
high inference accuracy despite limited network bandwidth. CloudSeg sends video streams
in low resolution and uses a cloud-side super-resolution process to recover high-resolution
frames, effectively reducing bandwidth requirements while maintaining accuracy. The
paper [12] presented a solution to improve real-time object detection in edge systems using
multi-model and multi-device detection parallelism. By analyzing performance bottlenecks
and optimizing detection through parallel processing, the study demonstrated significant
improvements in frame-per-second (FPS) processing rates, thereby achieving near real-time
detection performance on heterogeneous edge devices for efficient video analytics. In [13],
the concept of “VAP performance clarity” was introduced to address the challenges in
evaluating video analytics pipelines (VAPs), which are used in edge video analytics to
balance inference accuracy and resource cost. The authors presented “Yoda”, the first
benchmark designed to characterize the interaction between VAPs and video content, pro-
viding a precise performance clarity profile to define the accuracy vs. cost trade-off. The
accuracy–latency trade-off for real-time deep video analytics at the edge is investigated
in [14], focusing on YOLO-based object detection and WebRTC-based video streaming. It
proposes a mechanism to adapt video streaming settings, such as bitrate and resolution, to
enhance accuracy while maintaining low latency, and demonstrates its efficiency in finding
optimal configurations through simulations. The paper [15] introduced an approach to
enhance the reliability of deep-learning-based object detection on resource-constrained
edge devices by transforming a state-of-the-art detection algorithm into a task optimization
problem. Using a semi-partitioned rate-monotonic scheduling algorithm, the proposed
method improved real-time video inference performance and enhanced system reliability
and detection accuracy. A recent study in [16] proposed a solution for compressing video
content live-streamed from devices to the edge, while maintaining accuracy and timeliness
in video analytics. The proposed solution utilized offline profiling and online adaptation
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to optimize on-device processing for video compression, showing superior performance
compared to state-of-the-art methods across various object detection tasks and datasets.
A joint video query scheduling and resource allocation approach is introduced in [17] for
low-latency, accuracy-guaranteed video analytics in edge-based systems. The problem
is formulated as a Markov decision process to handle uncertainties in resource demands
and scheduling, and an edge-coordinated reinforcement learning algorithm is proposed to
adaptively manage query scheduling and resource allocation. Simulation results demon-
strated that the proposed method significantly improved latency and accuracy. A recent
study [18] proposed a novel cascade architecture designed to address the limitations of
existing retrospective analytics systems by splitting the cascade computation between the
compressed and pixel domains. The proposed solution, CoVA, handled both temporal
and spatial queries, cascading the analysis into three stages, where the first two operate
in the compressed domain and the final stage in the pixel domain. By selectively decod-
ing a minimal set of frames, CoVA alleviates the decoding bottleneck and significantly
improves performance.

2.2. Filtration for Analytics at the Edge

Related to the second category, several filtering strategies have been proposed to
reduce computing overhead and minimize edge-to-cloud data transfer in large-scale video
analytics systems. These strategies can be categorized into three main models: compressed
object detection models [5–7], binary classification models [8], and pixel-level frame differ-
encing methods [9].

One of the earliest and most relevant studies related to video filtering for video ana-
lytic systems, Glimpse was introduced as a continuous, real-time object recognition system
for camera-equipped mobile devices, proposed in [9]. To mitigate accuracy loss due to
server latency, Glimpse maintained an active cache of video frames on the mobile device
and employs trigger frames to minimize network bandwidth usage. Experiments with
Android smartphones and Google Glass demonstrated that Glimpse significantly improves
recognition precision, achieving very high accuracy. In [6], the authors presented Focus,
a system aimed at providing low-cost and low-latency querying for large video datasets
recorded for traffic control and surveillance. Focus splits query processing between ingest
time and query time by using lightweight CNN classifiers to create an approximate in-
dex at ingest time, and compensates for reduced accuracy by employing more expensive
CNNs during query time. The experimental results demonstrated that Focus achieved
significantly lower query latency compared to state-of-the-art video querying systems.
In [8], the authors introduced FilterForward, an edge-to-cloud system aimed at managing
large-scale video camera deployments by utilizing lightweight edge filters to backhaul
only relevant video frames. FilterForward employed fast “microclassifiers” to share com-
putation and detect multiple events on resource-constrained edge nodes, minimizing the
transmission of full video streams. Evaluations on real-world datasets demonstrated that
FilterForward significantly enhances computational efficiency and event detection accuracy
while reducing network bandwidth usage. The study [10] addressed the high resource
demands of real-time video analytics pipelines by exploring on-camera filtering, shifting
the filtering process to the start of the pipeline. Existing approaches have often relied
on neural networks running on edge or backend servers, which can be costly. However,
commodity cameras lack the resources to run such intensive operations and are typically
limited to frame differencing based on low-level features, which can compromise query
accuracy if used improperly. To tackle this issue, the authors propose Reducto, a system
that dynamically adapts filtering decisions according to the correlations among feature
type, filtering threshold, query accuracy, and video content. The experimental results show
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that Reducto can filter out 51–97% of frames while maintaining the desired accuracy. In [5],
the authors have proposed an edge computing-based system for scalable video analytics
that reduces data transfer between surveillance cameras and cloud servers by leveraging
information from the encoded bitstream. The proposed approach focuses on minimizing
processing complexity by filtering non-motion frames and performing object tracking at the
edge. Evaluation results demonstrated that the system, implemented using low-capacity
edge devices and a GPU-enabled server, achieved the same frame analysis accuracy while
significantly reducing the cloud server’s GPU, CPU load, and network traffic. In a recent
study [7], researchers proposed the cross-video filtration (CVF) framework to enhance
the efficiency of deep neural network (DNN)-based video analytics in edge applications.
Recognizing that only a small portion of camera streams typically contain objects of interest,
CVF aims to reduce unnecessary processing of all frames with resource-intensive DNNs.
The framework employs compressed-domain data, lightweight classification models, and
a prioritization algorithm to filter frames across multiple streams based on content and
resource constraints. The experimental results demonstrate that CVF effectively reduces
response times and improves system efficiency in multi-camera environments.

2.3. WiFi-Based Sensing Technologies

WiFi-based sensing technology has recently gained significant attention as a contact-
less method for human presence detection across various domains, including smart homes,
healthcare, and security systems. The attention-enhanced deep learning for presence de-
tection (ALPD) system [19] demonstrates high detection accuracy by leveraging CSI data.
Through attention mechanisms, ALPD identifies important CSI subcarriers and employs
bidirectional LSTM networks to learn temporal dependencies. This approach achieves
superior performance in both static and dynamic scenarios, outperforming traditional
methods even in multi-room environments, thereby opening new technical possibilities.
Similarly, the time-selective condition dual feature extraction recurrent network (TCD-
FERN) system [20] addresses the challenge of multi-room presence detection by separating
CSI data into dynamic and static features. TCD-FERN achieves robust performance in
both LoS (line-of-sight) and NLoS (non-line-of-sight) settings. By incorporating a time
selection mechanism and a voting-based method, the system enhances detection accuracy
to over 97%, demonstrating cost-effectiveness by utilizing only a limited number of APs.
Another study [21] applies signal processing techniques, such as Fourier transform and
wavelet transform, to CSI data, followed by analysis using neural networks. By integrating
a preprocessing pipeline combining low-pass filters and wavelet transforms to reduce noise
and extract salient features, the study achieves an impressive detection accuracy exceeding
99%, even in complex indoor environments. Beyond presence detection, WiFi-based sens-
ing has shown potential for more complex tasks, such as multi-class activity recognition.
By increasing model complexity and integrating advanced feature extraction with deep
learning, these systems can classify diverse human activities. For instance, the authors
of [22] developed a human activity recognition (HAR) system utilizing MIMO antennas
and an LSTM-based deep learning model, achieving a detection accuracy of 97.5% across
seven activities, including those conducted through walls. The system’s reliability in NLoS
environments demonstrates the effective use of multipath propagation. Further extending
the capabilities of WiFi-based HAR, the AFE-MatNet framework [23] achieves high detec-
tion accuracy without retraining in dynamic environments. By filtering irrelevant data and
enhancing activity-specific features, AFE-MatNet maintains accuracy above 90% across
diverse settings, highlighting its potential for environment-independent applications.

These studies underscore the transformative potential of WiFi-based sensing tech-
nologies, evolving from simple presence detection to sophisticated applications, such as



Sensors 2025, 25, 701 6 of 16

complex human activity recognition, thereby paving the way for broader adoption in
various real-world scenarios.

3. Motivation
Wi-Filter addresses the limitation of previous approaches that rely on static or pre-

determined thresholds for frame filtering. To motivate the need for a more adaptive
solution, we first conducted experiments to evaluate the performance of a widely used
binary classification approach [8] in controlled environments.

Figure 1 presents the motion detection results obtained using a simple binary classi-
fication method based on YOLO [24] under two different lighting conditions, (a) bright
environments and (b) dark environments, with two different thresholds, θ = 0.7 and
θ = 0.3. With θ = 0.7, human targets were accurately identified under bright conditions;
however, no motion was detected under dark conditions, leading to the inaccurate filtering
of frames despite the presence of the target.

(a)

(b)

(c)

Figure 1. Limitations of static, predefined threshold selection. (a) In bright conditions, YOLOv4
accurately identified the target regardless of the threshold value. (b) Under low-light conditions,
YOLOv4 struggled with detection failures at a high threshold value (θ = 0.7) but correctly identified
the target with a lower threshold (θ = 0.3). (c) A very low threshold may lead to false positives, such
as misidentifying a chair as a human, resulting in unnecessary video frame forwarding.
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On the other hand, with θ = 0.3, the motion detection detector, i.e., the YOLO-based
binary classifier, successfully detected human motion in both bright and dark conditions.
However, Figure 1c indicates that using a lower threshold can easily lead to false detection
and will pass frames that do not contain relevant information. In summary, filtering
accuracy may be compromised when the threshold is set too high, whereas the filtering
effectiveness is diminished when the threshold is too low. Given the inherent variability of
video content, determining an optimal threshold is challenging, which highlights the need
for a more adaptive and dynamic filtering approach.

To overcome this challenge, we recognized the fact that the propagation of signals
through a wireless channel is affected by the composition of the surrounding environment
and the presence of obstacles. The physical changes in wireless channels can be accurately
captured through CSI analysis based on the opportunistic use of Wi-Fi signals [25]. Figure 2
presents a spectrogram of Wi-Fi CSI amplitudes for two different activities, no human
activity and one person walking in the target area, under (a) bright and (b) dark conditions.
It can be seen that the patterns in the CSI data differ significantly depending on whether
there is human activity in the target area regardless of the lighting condition, that is, of
whether it is a dark or bright environment. Wi-Filter harnesses patterns in the Wi-Fi signal
to dynamically adjust thresholds to maximize filtering benefits and handle inaccurate frame
filtering. In particular, when no motion is detected as a result of Wi-Fi sensing, a high
threshold is selected to trigger frame filtering, and, conversely, when motion is detected, a
low threshold is selected to suppress inaccurate frame filtering.

(a)

(b)

Figure 2. CSI spectrogram obtained for two different states, no person in the room and one person
walking in the room, under (a) bright and (b) dark conditions.

4. Wi-Filter System Design
In this section, we introduce the system design of Wi-Filter, a novel efficient frame-

filtering method used for camera-based video streams.
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4.1. Overview

An overview of the Wi-Filter architecture is illustrated in Figure 3. Wi-Filter can be
implemented as an on-device module on the wireless camera itself or deployed on edge
devices as a proxy component, where the camera streams the frames to the Wi-Filter proxy
located at the edge via a Wi-Fi connection.

Figure 3. Wi-Filter architecture.

Wi-Filter consists of two stages: (i) the data collection stage and (ii) the execution stage.
In the first stage, CSI data collection and automatic labeling are performed for pre-training
a lightweight Wi-Fi-based motion sensing model. In this step, the motion detector (for
example, YOLOv4) performs frame filtering in the conventional way using a predefined (for
example, θ = 0.7) threshold. When the training of the Wi-Fi sensing model is completed,
the execution stage begins. In the execution stage, the trained Wi-Fi sensing model acts
as a threshold selector and derives the filtering threshold θ using real-time measured CSI
data as the input. The θ value overrides the predefined threshold of the motion detector to
dynamically perform frame filtering.

4.2. Data Collection and Auto-Labeling Stage

Threshold selector is a lightweight binary classifier that takes the measured Wi-Fi
CSI samples as the input and determines the presence or absence of motion in the target
domain where the camera is installed. Binary class labels are required for the measured
CSI data for model training. We first present a brief background of the CSI.

The channel response of a wireless communication link depends heavily on the envi-
ronment between a pair of transmitter (TX) and receiver (RX) antennas [26], and CSI can
accurately reflect the physical changes in the wireless channel. In orthogonal frequency
division multiplexing (OFDM) communication systems, it is assumed that the general
model of CSI can be represented as follows:

y = Hx + noise, (1)

where y is the vector signal received, x is the signal vector transmitted, noise represents
the Gaussian noise, and H denotes the channel gain information. Multiple-input multiple-
output (MIMO) and OFDM systems have provided much richer information for multiple
OFDM sub-carriers for each pair of TX-RX antennas to enable a sophisticated analysis of the
packets transmitted. The transmitter antenna i provides a set of values Hi,r to the receiver
r, where Hi,j represents a vector containing complex pairs captured for each sub-carrier
represented as illustrated:

h( f ; t) =
N

∑
i=1

ai(t)e−j2π f γi(t), (2)

where ai(t) is the power attenuation, γi is the propagation delay, N represents the number
of multi-path components, and f is the carrier frequency. Several CSI extraction tools have
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been published for various Wi-Fi chipsets over the last decade [25,27]. We use the Nexmon
CSI Extractor [26] to extract the CSI data.

To train our neural network models for Wi-Fi-based motion sensing, we leverage
a self-supervised approach to collect a large labeled CSI dataset. Figure 4 illustrates an
auto-labeling system that collects Wi-Fi CSI data and performs automatic labeling for the
Wi-Filter threshold selector. The detection results obtained from an object detector such as
YOLOv4 for each frame are recorded along with the time information, and are periodically
transmitted to a server together with the measured CSI samples.

The server performs time synchronization between the video and Wi-Fi CSI data as
follows. First, the period for continuously recognizing an object using the result of the
object detector is derived as Tk, containing the frame start time ts

k and end time te
k, and

added to a set T = {T1, T2, ...}. Thereafter, the annotation is performed by determining
whether each unlabeled CSI sample CSI-x is measured simultaneously with ∃Tk ∈ T based
on the following criteria:

Label of the sample CSIx is set to

1, if ts
k ≤ tCSI-x ≤ ts

k,

0, otherwise.
In particular, when the timestamp of a CSI sample is in any Tk = [ts

k, te
k] ∈ T, it is

annotated as 1, otherwise it is annotated as 0.

Figure 4. CSI auto-labeling architecture for Wi-Filter.

4.3. Run-Time Stage

In recent years, numerous deep learning (DL) architectures have been explored in the
literature for Wi-Fi-based human sensing, including multilayer perceptron (MLP), convolu-
tional neural networks (CNN), simple recurrent neural networks (SRNN), long short-term
memory (LSTM), bidirectional LSTM (BiLSTM), gated recurrent unit (GRU), residual
network (ResNet), autoencoders, transformers, and hybrid models [28] (refer to [28] for
further details).

Unlike these sophisticated models for Wi-Fi based gesture and activity recognition,
Wi-Filter aims to design a lightweight binary classifier, enabling on-device operation even
in resource-constrained systems such as wireless cameras. Accordingly, we choose to
apply lightweight models including long short-term memory (LSTM) and one-dimensional
convolutional neural networks (1D CNN), which are widely used for learning time-series
data, and random forest to Wi-Filter by considering the size of each sample and training
data set. We will describe the experiments conducted to test the efficacy of these three
different models in Section 5.
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Figure 5 illustrates the real-time human presence detection process for the 1D CNN
model of Wi-Filter’s threshold selector. First, the raw CSI samples acquired in real-time are
converted into amplitude values and normalized. Thereafter, the input data are formed by
combining the data of the window size W for each K sub-carrier selected in the pre-training.
The detailed data collection and preprocessing procedure is as follows. Note that this
procedure is also applied to the model’s pre-training process, as described in Section 4.2.

• MAC Filtering and Feature Removal: During the preprocessing stage, packets are
filtered based on their MAC addresses to ensure only data relevant to the target devices
are processed. Then, irrelevant features such as MAC addresses and timestamps are
removed from the collected packets to focus on the CSI values and minimize the data size.

• Subcarrier Selection: Among the subcarriers, 12 subcarriers—including null subcarri-
ers (used to protect the band and enable coexistence with other wireless technologies)
and pilot subcarriers (used for Wi-Fi link control)—are excluded. This leaves only
52 meaningful subcarriers for further analysis.

• Outlier Handling: Outliers in the remaining CSI amplitude samples, which are
common in real-world environments, are not removed. Instead, they are retained and
incorporated into the learning process to ensure the model’s robustness.

• Dimensionality Reduction: For the selected 52 subcarriers, data collected over a
window size W result in an original data dimension of 52 ∗ W. To enable faster
inference, principal component analysis (PCA) is applied to reduce the input size to
3 ∗W. These reduced-dimensional data serve as the final input to the proposed model.

Figure 5. Overview of the real-time human presence detection process and lightweight CNN-based
binary classifier architecture for the threshold selector.

As we will demonstrate in the results in Section 5.2, the reduced-dimensional data
retain high accuracy. However, further reducing the dimensionality W beyond 3 results in
significant information loss, leading to a notable decline in accuracy. It is fed into the input
of the pre-trained 1D CNN model, which, in turn, determines the presence or absence of a
person and returns a filtering threshold as follows:

θ =

θlow in the presence of a person,

θhigh in the absence of a person.

The architecture of the proposed 1D CNN model is presented in Table 1. The input
size corresponds to the configured window size W and K selected subcarriers, structured
into a dimension of 3. Padding was applied to each convolution operation to maintain
consistent output sizes. The rectified linear unit (ReLU) activation function was employed
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after each convolution layer. To mitigate overfitting, a dropout layer with a rate of 0.5
was incorporated.

Table 1. Network architecture.

Layer Type Filter/Unit Kernel Size Output Shape

1 Input - - (W, 3)

2 Conv1D 128 3 (W − 2, 128)

3 MaxPooling1D - 2 (W−2
2 , 128)

4 Conv1D 128 1 (W−2
2 , 128)

5 GlobalMaxPooling1D - - (128)

6 FC 128 - (128)

7 Dropout 0.5 - (128)

8 FC 64 - (64)

9 FC 1 - (1)

The model was trained using the binary cross entropy loss function, which is well-
suited for binary classification tasks, and the Adam optimizer. Training was performed for
a maximum of 50 epochs with a batch size of 32. The initial learning rate was set to 0.01
and reduced by a factor of 10 every 10 epochs to facilitate convergence.

The dataset for training was collected using the auto-labeling method detailed in
Section 4.2, comprising approximately 415,000 samples (10 CSI samples per second). To
ensure a balanced dataset, approximately 200,000 samples were collected for each of the
two classes used for training.

Recall that, as illustrated in Figure 5, our proposed framework employs a 1D CNN
instead of the commonly used 2D CNN models in Wi-Fi sensing to process run-time
collected CSI data. This decision allows the filtering module to function directly on-device
with minimal computational overhead, which is crucial for our intended application.

The computational complexities of 1D and 2D convolutions differ substantially [29].
Specifically, convolving an image of dimensions N × N with a K × K kernel in a 2D
CNN results in a computational complexity of O(N2K2), whereas the corresponding 1D
convolution (with the same dimensions, N and K) has a complexity of O(NK). This implies
that under equivalent conditions—such as identical configurations, network architectures,
and hyperparameters—the computational complexity of a 1D CNN is significantly lower
than that of a 2D CNN. Given that our goal is to develop a lightweight filtering module
rather than a full-fledged classification model, the lower computational complexity of the
1D CNN makes it a highly efficient and practical solution.

5. System Implementation and Evaluation
5.1. Implementation and Experiments

In this study, the Nexmon CSI Extractor [26] for Raspberry Pi 4B bcm43455c0 was
selected to implement a prototype of Wi-Filter. We deployed testbeds consisting of several
Raspberry Pi transmitters and a TP-link Access Point. The CSI measurements of 52 out of
64 sub-carriers were extracted from each transmit/receiver antenna pair and stored in our
server with timestamps for automatic labeling, offline processing, and model training. Wi-
Filter uses a dynamic threshold mechanism with θlow = 0.3 and θhigh = 0.7. To evaluate the
proposed method, we conducted experiments using Wisenet’s four channel camera systems,
SNK-B73047BW, in two classrooms. The outputs from all the systems including Raspberry
Pis and cameras were timestamped from an external NTP time server for synchronization.
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5.2. Experiment Results

The first experiment evaluates the effectiveness of the proposed auto-labeling approach
and lightweight models for the real-time detection of human presence based on the use
of Wi-Fi CSI. To design the lightweight component and extract the principle features
sensitive to human motion in the target environments, we use principal component analysis
(PCA)-based technology to reduce the CSI dimensions and select the top three principal
components, that is, K = 3 (in Figure 5) among 52 sub-carriers.

Figure 6 compares the motion detection accuracy of three models—1D CNN, LSTM,
and random forest—and examines the effect of the input size W on accuracy. The models
were evaluated by increasing W in increments of 20, ranging from 10 to 70. The results
indicate that all three models achieve higher accuracy as the window size increases. Based
on these findings, we selected W = 50, which balances accuracy and suitability for real-
time classification. While both 1D CNN and LSTM demonstrated similar accuracy, 1D
CNN exhibited approximately 1.3 times faster inference speed and required fewer learning
parameters compared to LSTM. This significant advantage in computational efficiency,
combined with its robust performance, led to the selection of 1D CNN as the optimal model
for the Wi-Filter’s threshold selector.

Figure 6. Accuracy of threshold selector for motion sensing for various window sizes.

Table 2 shows the real-time motion detection accuracy of the 1D CNN model trained
via the proposed auto-labeling system in three indoor locations. For each of the three target
(test) sites, the first row is the accuracy of the model built using samples newly collected
at each location using the proposed automatic labeling system, and the second row is the
accuracy when using the pre-trained model built on samples collected from another site.
The results highlight the effectiveness of the proposed auto-labeling system, achieving high
accuracy ranging from 97.2% to 98.4%.

Table 2. Accuracy of auto-labeling for three places.

Data Collection Site 1 2 3

Target site 98.1 97.2 98.4
Different site 42.8 43.3 42.2

Figure 7 presents a comparison of the filtering performances of the static threshold
technique (two settings) and Wi-Filter. Experiments were performed in two locations
under light (experiment IDs 1 and 2) and dark conditions (IDs 3 and 4). As depicted in
Figure 7a, a low threshold value θ = 0.3 indicates a relatively high detection performance.
In contrast, high thresholds, particularly in dark environments, lead to very poor detection
performance, causing false filtering. However, as indicated in Figure 7b, the lower the
threshold, the higher the false positive value; therefore, the benefits of filtering are lost. In
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contrast, the proposed Wi-Filter demonstrates a very low probability of a false positive
while showing a detection rate almost equal to a low threshold value.

(a) (b)

Figure 7. Comparison of the filtering performances of the static threshold technique (two settings)
and Wi-Filter. (a) True positives in four different places under bright (experiment IDs 1 and 2) and
dark conditions (IDs 3 and 4); (b) false positive.

As an additional experiment, we measured the run-time resource usage during the real-
time analysis of a selected 360 s scenario. Figure 8 depicts a comparison of the computing
resource usage of the static threshold technique (two settings) and Wi-Filter for one selected
real scenario: (a) CPU utilization (%), and (b) average network transmission rate (Kbps).
As in the previous result in Figure 7, Wi-Filter shows a balanced resource usage between a
low threshold value θ = 0.3 and a high threshold value θ = 0.7.

(a)

(b)

Figure 8. Average computing resources of the static threshold technique (two settings) and Wi-Filter:
(a) CPU utilization, and (b) network transmission rate.
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6. Conclusions and Discussion
In this study, we introduced Wi-Filter, a novel frame-filtering approach that oppor-

tunistically leverages Wi-Fi signals to enhance motion detection-based frame filtering. The
core of Wi-Filter is a shallow-layered, 1D CNN-based Wi-Fi motion sensing module, which
achieves an accuracy of up to 97.2%. This module dynamically adjusts filtering thresholds
for target areas, ensuring robust motion detection performance. As a result, unnecessary
frames are effectively filtered, reducing the false positive rate by over 60% compared to
environments configured with lower confidence score thresholds.

Wi-Filter incorporates a self-supervised learning mechanism, enabling it to adapt
to changes in target areas. Moreover, the trained model is reusable across different
camera systems, offering flexibility and scalability. Beyond simple binary classification,
Wi-Filter can also be extended to multi-class classification tasks by integrating deeper
model architectures.

However, the system faces challenges due to the sensitivity of Wi-Fi CSI data to
environmental conditions. A model trained in one target area experiences a significant
drop in accuracy when applied to a different target area. Additionally, while Wi-Filter
effectively addresses many issues associated with static filtering thresholds, its overall
accuracy remains dependent on the reliability of the vision-based motion detector.

In our future work, we aim to enhance the adaptability and transferability of Wi-Filter
through the following approaches:

(i) optimizing threshold selection through the development of dynamic mechanisms that
adjust filtering thresholds based on real-time environmental and contextual factors;

(ii) integrating advanced Wi-Fi-based positioning models to make the system more versa-
tile and applicable across diverse environments;

(iii) leveraging meta-learning techniques to enable quick adaptation to new domains with
minimal additional data, thereby improving the system’s robustness and performance
in dynamic scenarios.
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